Copied to
clipboard

G = C4218D14order 448 = 26·7

18th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4218D14, C14.1242+ 1+4, (C4×D7)⋊4D4, C4.32(D4×D7), (C2×Q8)⋊18D14, C28.61(C2×D4), C4.4D48D7, C284D414C2, C28⋊D424C2, (C4×C28)⋊22C22, C22⋊C420D14, D14.45(C2×D4), (C2×D28)⋊9C22, C22⋊D2823C2, D14⋊D439C2, D14⋊C423C22, (C2×D4).171D14, C42⋊D719C2, Dic7.50(C2×D4), (Q8×C14)⋊12C22, C14.88(C22×D4), C28.23D421C2, (C2×C28).186C23, (C2×C14).218C24, Dic7⋊C455C22, C74(C22.29C24), (C4×Dic7)⋊35C22, C2.48(D48D14), C23.40(C22×D7), (D4×C14).153C22, (C22×C14).48C23, (C23×D7).63C22, C22.239(C23×D7), (C2×Dic7).113C23, (C22×D7).213C23, (C2×D4×D7)⋊16C2, C2.61(C2×D4×D7), (C2×C4×D7)⋊25C22, (C2×Q82D7)⋊10C2, (C7×C4.4D4)⋊10C2, (C2×C7⋊D4)⋊22C22, (C7×C22⋊C4)⋊28C22, (C2×C4).193(C22×D7), SmallGroup(448,1127)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4218D14
C1C7C14C2×C14C22×D7C23×D7C2×D4×D7 — C4218D14
C7C2×C14 — C4218D14
C1C22C4.4D4

Generators and relations for C4218D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=a2b-1, dbd=b-1, dcd=c-1 >

Subgroups: 2092 in 334 conjugacy classes, 103 normal (29 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C14, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C42⋊C2, C22≀C2, C4⋊D4, C4.4D4, C4.4D4, C41D4, C22×D4, C2×C4○D4, C4×D7, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×Q8, C22×D7, C22×D7, C22×D7, C22×C14, C22.29C24, C4×Dic7, Dic7⋊C4, D14⋊C4, C4×C28, C7×C22⋊C4, C2×C4×D7, C2×C4×D7, C2×D28, C2×D28, D4×D7, Q82D7, C2×C7⋊D4, D4×C14, Q8×C14, C23×D7, C42⋊D7, C284D4, C22⋊D28, D14⋊D4, C28⋊D4, C28.23D4, C7×C4.4D4, C2×D4×D7, C2×Q82D7, C4218D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, 2+ 1+4, C22×D7, C22.29C24, D4×D7, C23×D7, C2×D4×D7, D48D14, C4218D14

Smallest permutation representation of C4218D14
On 112 points
Generators in S112
(1 101 19 108)(2 109 20 102)(3 103 21 110)(4 111 15 104)(5 105 16 112)(6 99 17 106)(7 107 18 100)(8 77 24 84)(9 71 25 78)(10 79 26 72)(11 73 27 80)(12 81 28 74)(13 75 22 82)(14 83 23 76)(29 56 90 57)(30 58 91 43)(31 44 92 59)(32 60 93 45)(33 46 94 61)(34 62 95 47)(35 48 96 63)(36 64 97 49)(37 50 98 65)(38 66 85 51)(39 52 86 67)(40 68 87 53)(41 54 88 69)(42 70 89 55)
(1 97 26 29)(2 91 27 37)(3 85 28 31)(4 93 22 39)(5 87 23 33)(6 95 24 41)(7 89 25 35)(8 88 17 34)(9 96 18 42)(10 90 19 36)(11 98 20 30)(12 92 21 38)(13 86 15 32)(14 94 16 40)(43 80 50 109)(44 103 51 74)(45 82 52 111)(46 105 53 76)(47 84 54 99)(48 107 55 78)(49 72 56 101)(57 108 64 79)(58 73 65 102)(59 110 66 81)(60 75 67 104)(61 112 68 83)(62 77 69 106)(63 100 70 71)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 11)(9 10)(12 14)(16 21)(17 20)(18 19)(23 28)(24 27)(25 26)(29 89)(30 88)(31 87)(32 86)(33 85)(34 98)(35 97)(36 96)(37 95)(38 94)(39 93)(40 92)(41 91)(42 90)(43 69)(44 68)(45 67)(46 66)(47 65)(48 64)(49 63)(50 62)(51 61)(52 60)(53 59)(54 58)(55 57)(56 70)(71 72)(73 84)(74 83)(75 82)(76 81)(77 80)(78 79)(99 102)(100 101)(103 112)(104 111)(105 110)(106 109)(107 108)

G:=sub<Sym(112)| (1,101,19,108)(2,109,20,102)(3,103,21,110)(4,111,15,104)(5,105,16,112)(6,99,17,106)(7,107,18,100)(8,77,24,84)(9,71,25,78)(10,79,26,72)(11,73,27,80)(12,81,28,74)(13,75,22,82)(14,83,23,76)(29,56,90,57)(30,58,91,43)(31,44,92,59)(32,60,93,45)(33,46,94,61)(34,62,95,47)(35,48,96,63)(36,64,97,49)(37,50,98,65)(38,66,85,51)(39,52,86,67)(40,68,87,53)(41,54,88,69)(42,70,89,55), (1,97,26,29)(2,91,27,37)(3,85,28,31)(4,93,22,39)(5,87,23,33)(6,95,24,41)(7,89,25,35)(8,88,17,34)(9,96,18,42)(10,90,19,36)(11,98,20,30)(12,92,21,38)(13,86,15,32)(14,94,16,40)(43,80,50,109)(44,103,51,74)(45,82,52,111)(46,105,53,76)(47,84,54,99)(48,107,55,78)(49,72,56,101)(57,108,64,79)(58,73,65,102)(59,110,66,81)(60,75,67,104)(61,112,68,83)(62,77,69,106)(63,100,70,71), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,11)(9,10)(12,14)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(29,89)(30,88)(31,87)(32,86)(33,85)(34,98)(35,97)(36,96)(37,95)(38,94)(39,93)(40,92)(41,91)(42,90)(43,69)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(56,70)(71,72)(73,84)(74,83)(75,82)(76,81)(77,80)(78,79)(99,102)(100,101)(103,112)(104,111)(105,110)(106,109)(107,108)>;

G:=Group( (1,101,19,108)(2,109,20,102)(3,103,21,110)(4,111,15,104)(5,105,16,112)(6,99,17,106)(7,107,18,100)(8,77,24,84)(9,71,25,78)(10,79,26,72)(11,73,27,80)(12,81,28,74)(13,75,22,82)(14,83,23,76)(29,56,90,57)(30,58,91,43)(31,44,92,59)(32,60,93,45)(33,46,94,61)(34,62,95,47)(35,48,96,63)(36,64,97,49)(37,50,98,65)(38,66,85,51)(39,52,86,67)(40,68,87,53)(41,54,88,69)(42,70,89,55), (1,97,26,29)(2,91,27,37)(3,85,28,31)(4,93,22,39)(5,87,23,33)(6,95,24,41)(7,89,25,35)(8,88,17,34)(9,96,18,42)(10,90,19,36)(11,98,20,30)(12,92,21,38)(13,86,15,32)(14,94,16,40)(43,80,50,109)(44,103,51,74)(45,82,52,111)(46,105,53,76)(47,84,54,99)(48,107,55,78)(49,72,56,101)(57,108,64,79)(58,73,65,102)(59,110,66,81)(60,75,67,104)(61,112,68,83)(62,77,69,106)(63,100,70,71), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,11)(9,10)(12,14)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(29,89)(30,88)(31,87)(32,86)(33,85)(34,98)(35,97)(36,96)(37,95)(38,94)(39,93)(40,92)(41,91)(42,90)(43,69)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(56,70)(71,72)(73,84)(74,83)(75,82)(76,81)(77,80)(78,79)(99,102)(100,101)(103,112)(104,111)(105,110)(106,109)(107,108) );

G=PermutationGroup([[(1,101,19,108),(2,109,20,102),(3,103,21,110),(4,111,15,104),(5,105,16,112),(6,99,17,106),(7,107,18,100),(8,77,24,84),(9,71,25,78),(10,79,26,72),(11,73,27,80),(12,81,28,74),(13,75,22,82),(14,83,23,76),(29,56,90,57),(30,58,91,43),(31,44,92,59),(32,60,93,45),(33,46,94,61),(34,62,95,47),(35,48,96,63),(36,64,97,49),(37,50,98,65),(38,66,85,51),(39,52,86,67),(40,68,87,53),(41,54,88,69),(42,70,89,55)], [(1,97,26,29),(2,91,27,37),(3,85,28,31),(4,93,22,39),(5,87,23,33),(6,95,24,41),(7,89,25,35),(8,88,17,34),(9,96,18,42),(10,90,19,36),(11,98,20,30),(12,92,21,38),(13,86,15,32),(14,94,16,40),(43,80,50,109),(44,103,51,74),(45,82,52,111),(46,105,53,76),(47,84,54,99),(48,107,55,78),(49,72,56,101),(57,108,64,79),(58,73,65,102),(59,110,66,81),(60,75,67,104),(61,112,68,83),(62,77,69,106),(63,100,70,71)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,11),(9,10),(12,14),(16,21),(17,20),(18,19),(23,28),(24,27),(25,26),(29,89),(30,88),(31,87),(32,86),(33,85),(34,98),(35,97),(36,96),(37,95),(38,94),(39,93),(40,92),(41,91),(42,90),(43,69),(44,68),(45,67),(46,66),(47,65),(48,64),(49,63),(50,62),(51,61),(52,60),(53,59),(54,58),(55,57),(56,70),(71,72),(73,84),(74,83),(75,82),(76,81),(77,80),(78,79),(99,102),(100,101),(103,112),(104,111),(105,110),(106,109),(107,108)]])

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J7A7B7C14A···14I14J···14O28A···28R28S···28X
order122222222222444444444477714···1414···1428···2828···28
size111144141428282828224444141428282222···28···84···48···8

64 irreducible representations

dim1111111111222222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D7D14D14D14D142+ 1+4D4×D7D48D14
kernelC4218D14C42⋊D7C284D4C22⋊D28D14⋊D4C28⋊D4C28.23D4C7×C4.4D4C2×D4×D7C2×Q82D7C4×D7C4.4D4C42C22⋊C4C2×D4C2×Q8C14C4C2
# reps111441111143312332612

Matrix representation of C4218D14 in GL8(𝔽29)

280000000
028000000
00100000
00010000
00000010
00000001
000028000
000002800
,
280000000
028000000
00010000
002800000
00000100
000028000
00000001
000000280
,
184000000
254000000
00100000
000280000
00001000
00000100
000000280
000000028
,
028000000
280000000
002800000
00010000
00001000
000002800
000000280
00000001

G:=sub<GL(8,GF(29))| [28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0],[18,25,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28],[0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1] >;

C4218D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{18}D_{14}
% in TeX

G:=Group("C4^2:18D14");
// GroupNames label

G:=SmallGroup(448,1127);
// by ID

G=gap.SmallGroup(448,1127);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,675,570,297,192,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^2*b^-1,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽